

SATURN has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101006443.

Technical solutions to mitigate ship noise in the EU SATURN project

Johan Bosschers (j.bosschers@marin.nl) [SATURN WP4 research lead]

Effects of sound on marine life

European Marine Board (2021)

Natural and Anthropogenic sound

Duarte et al (2021)

EU policy

- EU Maritime Strategic Framework Directive 2008/56 (MSFD), defines Good Environmental Status for marine waters. Descriptor 11: Underwater noise is at levels that do not adversely affect the marine environment
- Decision 2017/848 (2017): Noise levels should be monitored using measurements combined with modelling
 - Led to various noise measurement programs: JOMOPANS, JONAS, ...
- EU Action Plan Towards Zero Pollution (2021): Review MSFD by 2023, work on EU threshold values for maximum levels of underwater noise stemming from maritime transport, construction, dredging, ...
- But defining threshold values asks for quite some research questions to be answered

SATURN Consortium

Call (part) identifier: H2020-MG-2020-SingleStage-INEA

Topic: MG-BG-03-2020 Under water noise mitigation and

environmental impact

Start date: 1st February 2021

Duration: 48 months

Coordinator: UCC, MaREI

Partners: 20 (19 + 1 linked).

Countries: 9

Max EU contribution: €8.96 ME

Research and Innovation Action under WATERBORNE Technology Platform (TP)

GROUP

Fisheries & Aquaculture

DNV

Challenges for the shipping industry

- IMO targets 50% reduction in Green House Gase emissions by 2050 compared to 2008
- Introduction of
 - Energy Efficiency Design Index (EEDI)
 - Ship energy Efficiency Management Plan (SEEMP)
 - Energy Efficiency Existing Ship index (EEXI)
 - Carbon Intensity Indicator (CII)
- Can we optimize ships for reduced GHG-emissions and URN ?

Propeller cavitation

Ship source levels

Arveson & Vendittis (2000) 173 m cargo vessel

Sound sources:

- Propeller cavitation
- Main propulsor engine
- Auxiliary machinery

Ship source levels

Arveson & Vendittis (2000) 173 m cargo vessel

Sound sources:

- Propeller cavitation
- Main propulsor engine
- Auxiliary machinery

Propeller design trade-off

Propeller optimization for efficiency and cavitation inception speed [MARIN]

Possible GHG-URN win-win situations

- Electric propulsion systems
- Wind propulsion
- Air bubbles / layers / chambers
- Speed reduction
- Alternative propulsors
- •

SATURN WP4 — Technical solutions

• T4.3: Pumpjet [CNR &CETENA]

• T4.5: Trochoidal propulsor [NAVAL GROUP]

Twin-screw ferry, Loa= 168 m

- T4.4: Injection of air bubbles [MARIN]
 - Includes propeller design study with Wärtsilä NL

'Streamline' chemical tanker, Lpp= 94 m

Cavitation sound mitigation using air bubbles

Injecting air bubbles in propeller cavitation

Hadler, English & Gupta (1984)

EU FP7 SONIC D3.3 (2015) Rolls-Royce measurements

Sound isolation using air bubbles

Bubble screens are used to mitigate pile driving noise

Insertion loss by bubble screen, Bellman (2014)

T4.4 First tests on bubble injection below ship hull

Effect on propeller performance:

- Thrust reduction by 4%
- Efficiency reduction by 1%

WP4 - Task descriptions

- Improvement of Knowledge, Design tools, and Design evaluation tools
 - T4.1: Extend knowledge of mechanisms [CNR, CETENA]
 - T4.2: Improve numerical and experimental prediction tools [CNR, CETENA, MARIN, NG]
- Design and evaluate technical solutions (scale models)
 - T4.3: Pumpjet [CNR, CETENA]
 - T4.4: Propeller design and air bubbles [MARIN, Wärtsilä NL]
 - T4.5: Trochoidal propulsor [NAVAL GROUP]
- Analyse costs and benefits of technical solutions and review other solutions

(use dose-response from WP3, provide input for WP6)

- T4.6: Costs and benefits of new technical solutions (in T4.3, T4.4 and T4.5) [CETENA, DNV]
- T4.7: Establish source level assessment matrix of different propulsors and solutions [CNR, CETENA, DNV,
 MARIN, NG]

WP4 – Timeline

Гask	Description	Participant	Y1: feb 2021- jan 2022			Y2: feb 2022- jan 2023				Y3: feb 2023- jan 2024				Y4: feb 2024- jan 2025				
4.1	Mechanisms of URN	CNR+ CETENA								D4.1								
4.2	Improve computational and experimental tools	Naval Group														D4.5		
4.3	SL reduction twin screw vessel (pumpjet)	CNR + CETENA												D4.2				
4.4	SL reduction single-screw vessel (air bubbles)	MARIN + Wartsila				i i								D4.3				
4.5	SL reduction non-conventional propulsor	Naval Group												D4.4				
4.6	Cost-benefit analysis of solutions	CETENA + DNV-GL																D4.6
4.7	SL assessment matrix	CETENA + ALL																D4.7

Innovative solutions being developed

SATURN has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101006443.

Thank you!

www.SaturnH2020.eu

@Saturn_H2020

@SaturnH2020

Linkedin.com/company/SaturnH2020

